Imperial College Centre for

Outbreak Analysis

London MRC and Modelling

Mathematical modelling and outbreak response:
examples and lessons learnt
from West African Ebola

Anne Cori
Imperial College London
a.cori@imperial.ac.uk

RECON meeting
22 March 2018



Mathematical modelling for outbreak response

Theoretical mathematical work * Generic methods/tools
to analyse epidemic
data (in real-time)

=

Ad-hoc or semi ad-hoc
statistical methods to analyse
epidemic data (retrospectively)



Mathematical modelling for outbreak response

Theoretical mathematical work * Generic methods/tools
to analyse epidemic

Ad-hoc or semi ad-hoc . .
data (in real-time)

statistical methods to analyse
epidemic data (retrospectively)

——\



Example: the reproduction number R

The average number of secondary cases caused by each infected individual



Why should we care aboutR ?

1. Predict the potential impact of the outbreak ")
2. Assess the feasibility of control measures 0



Why should we care aboutR ?

1. Predict the potential impact of the outbreak ")
2. Assess the feasibility of control measures 0

3. Track potential changes in transmissibility over time

4. Evaluate the effectiveness of control measures (R



EpiEstim: an open source tool to estimate R in real time

Cori et al., AJE, 2013
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Using EpiEstim to quantify R for West African Ebola

(Results shown for Sierra Leone)

Early assessment of
- transmission potential

: ) _ Evaluation/adjustment
- projected impact if no further control

of control measures

WHO Ebola Response team, NEJM, 2014 & 2015



Using EpiEstim to quantify R for West African Ebola

(Results shown for Sierra Leone)

Early assessment of

- transmission potential Evaluation/adjustment
- projected impact if no further control of control measures
September 2014

Rp=2.02 [1.79-2.26]

(similar to previous outbreaks)

4000+

A Observed
o Fitted
== = Projected

3000 95% Cl

2000+

No. of Cases

1000+ =

-
-
-

WHO Ebola Response team, NEJM, 2014 & 2015



Using EpiEstim to quantify R for West African Ebola

(Results shown for Sierra Leone)
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Using EpiEstim to quantify R for West African Ebola

(Results shown for Sierra Leone)
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Using EpiEstim to understand drivers of transmissibility
and quantify their impact

* R, for agiven district/month was correlated with...

1. Proportion of cases 2. Proportion of cases hospitalised
reporting funeral exposure within 4 days of symptoms onset
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Could be used to design targets (e.g. proportion of cases to hospitalise <X days after

symptoms onset) & as a first step to building more complex mechanistic models
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Using modelling to assess
the role of rapid diagnostic tools for Ebola

PCR RDT
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Using modelling to assess
the role of rapid diagnostic tools for Ebola

- Key
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(a) PCR -Only
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(b) Dual Strategy

(c) RDT-Only

Nouvellet et al. Nature 2015

Using modelling to assess
the role of rapid diagnostic tools for Ebola
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Using modelling to assess
the role of rapid diagnostic tools for Ebola
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Learning from the Ebola experience:
Formalising the questions modellers can help answering
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What is the likely public health impact of the outbreak?
(%]
&
% How feasible is controlling the outbreak and what interventions would be
= appropriate?
>
<
Are current interventions effective and could they be improved?

* Other recurring questions of interest in the field?
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Clarifying what data are needed to answer each question

i Assessing Impact Feasibility of Control Improving
inter-
ventions
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Some ongoing work since Ebola:

Developing automated frameworks for incidence forecasting

19



Incidence forecasting: how did we do?
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Towards real-time, automated, spatially explicit
incidence forecasting?

DS & ProMED B HealthMap
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MRIIDS prototype for Ebola in West Africa in p

rogress
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Conclusions

More and more tools available to assist modelling during outbreaks
They should be flexible, tested & documented, and freely available

They need to talk to one another

They need to answer questions that are useful to contain outbreaks in practice

BUT: realistically we cannot rely ONLY on such tools; sometimes need to expand

to answer more specific questions in a given context
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